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are the result of interactions between individuals at different

Thus, sporadic intergroup encounters and individual forays

le in defining the dynamics of populations in social species.

rate of intergroup encounters for three western lowland gor-

la gorilla) groups with daily observations over 5 years, and

enotyped a larger population over four months. Both

aled a social system much more dynamic than anticipated,

sive intergroup encounters that involved social play by

duals, exchanges of members between groups likely modu-

p, and absence of infanticide evidenced by infants non

ilverback of the group where they were found. This resulted

composed of groups that interacted frequently and non-

ntrasting with the more fragmented and aggressive moun-

beringei beringei) societies. Such extended sociality can

aring of behavioural and cultural traits, but might also

ceptibility of western lowland gorillas to infectious diseases

ated their populations in recent times.

e processes driving the structure of animal societies is a non-

hich requires disentangling stable social networks from

mporal patterns [1]. In this context, temporal demographic

persal are the major drivers of variability in social group

plemented with short-term segregation/aggregation events

nteractions [2]. These lead to social structures above the

varying levels of complexity and dynamism. Social structure

adaptive response to environmental pressures, and flexibility

tion may facilitate reactions to varying environmental con-

mation on social structure is highly relevant in wildlife

tion and management [4]. However, highly dynamic social

ke the interpretation of social processes and their evolutionary

llenging task [2].

nd gorillas (WLG; Gorilla gorilla gorilla) offer the possibility of

ntially complex social structure in a great ape in areas with
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minimal human impact. The global population of this pri-

mate, recently estimated at about 360 000 individuals [5],

has suffered a dramatic decline mainly due to massive die-

offs caused by Ebolavirus outbreaks, and the forecasts predict

further sharp declines [6]. This great ape from the lowland

forests and swamps of western central Africa (see electronic

supplementary material, figure S1) lives in groups generally

consisting of one fully mature male (silverback) and several

adult females with their offspring, or in non-breeding

groups [7–9].

Compared to the better-studied mountain gorilla (G. beringei
beringei), the structure and dynamics of social groups in WLG

are poorly understood [10,11]. This bias is due to the higher

mobility and lower observability of WLG, impairing simul-

taneous monitoring of multiple groups [12]. For this reason,

most of the information of social interactions in WLG have

been gathered in bais, which are easily monitored but rare

swampy clearings in the forest where groups commingle

while feeding on grasses rich in salts [13] and are

[7–9,14,15]. These observations suggest that one of the most

striking differences between the two gorilla species is in

their social behaviour. While mountain gorilla group inter-

actions are frequently aggressive, WLG groups interact non-

aggressively [10]. Concordantly, infanticide is frequently

observed in mountain gorillas, while it has never been

reported in WLG [9,16]. Also, group takeovers by outside

males do not occur in WLG [9,16,17] as opposed to mountain

gorillas [18]. WLG groups have just one silverback, in con-

trast with the frequent multi-silverback groups of mountain

gorillas, where more than 15% of the infants are not sired

by the dominant male [19]. Nevertheless, bais are sites

where gorillas spend just 1% of their time [20] and not all

groups have access to them. Thus, social interactions there

might not be representative of what happens hidden in the

dense inaccessible forests, where resources may be more lim-

iting. In this context, assessing the degree and extent of

association between social groups at a small spatial scale

and over a short time period is key to understand spatial

organization and resource use. This knowledge is needed to

implement effective predictive models of infectious disease

transmission at large spatial and temporal scales, to interpret

evolutionary processes, and to develop suitable conservation

and management strategies. This is particularly important

because 77% of the WLG range falls outside protected

areas, making this great ape particularly vulnerable to

logging and poaching [5].

In order to shed light on the social dynamics of the western

lowland gorilla, we explored intergroup interactions of three

breeding groups that were habituated to the presence of obser-

vers and were monitored daily in Ngaga Forest, located in one

of the last stronghold for this great ape. Here, a dense popu-

lation that has not been affected by Ebola outbreaks in the

last decades still thrive. Additionally, we conducted an inten-

sive noninvasive genetic survey over a larger area to identify

neighbouring groups and solitary individuals and to investi-

gate their relatedness. This intense monitoring allowed us to

assess if interactions between members of different social

units (breeding and non-breeding groups, as well as solitary

individuals) were frequent, and to investigate the role of kin-

ship on these interactions. The results revealed a surprisingly

dynamic western lowland gorilla society, characterized by fre-

quent non-aggressive intergroup interactions likely facilitated

by very low rates of infanticide.
RSPB20182019—22/1/19—11:55–Copy Edited by: Not Mentioned
2. Methods
(a) Monitoring of focal groups
We monitored three focal groups (FG1, FG2 and FG3) of habitu-

ated western lowland gorilla in Ngaga Forest, on the

southwestern boundary of Odzala-Kokoua National Park

(Republic of the Congo, 08400 N–148600 E, electronic supplemen-

tary material, figure S1) from 2013 to 2017 (about 305 monitoring

sessions per group and year). The home ranges of these groups

overlap and the identity of each member was well known.

Expert trackers and researchers located the animals early in the

morning, normally before they left the nesting site and noted

their behaviour between 07.00 and 16.00 h for an average of

2 h/day per focal group (range: 1–5 h). Although the groups

were successfully located on most days, detailed observations

were often limited by the dense vegetation. Behavioural data

were recorded by M.B. and G.I. using instantaneous scan

sampling, focal individual sampling, and observations ad libitum
[21]. We conducted instantaneous scan samples at 5-min inter-

vals, to measure the amount of time that each individual was

in view, the amount of time spent feeding on fruit, feeding on

other food resources, resting, involved in social interactions, or

travelling. During times of intergroup encounters, we stopped

all other data collection and started collecting data on the inter-

group interactions. We used all-occurrence sampling of

behaviours focusing on aggressive (such as fighting, chasing,

fleeing, spatial avoidance, biting, beating and displacement)

and affiliative behaviours (such as embraces, touch, grooming,

play, sit in contact and social mount) [22]. We watched multiple

individuals and recorded behaviours at 1-min intervals. We com-

piled information about encounters between the focal groups

(summarized in electronic supplementary material, figure S2)

or between them and other groups. Some examples of these

interactions are described in electronic supplementary material,

table S1. Only the encounters in which we could individually

identify with certainty the participants from both groups were

included in this study. Throughout the duration of our study

the focal groups varied in size (FG1: 15–17 individuals; FG2:

15–24 individuals; FG3: 22–26 individuals) as a consequence

of birth, death and dispersal events, yet always remaining

under the leadership of the same silverback male.

The accompanying electronic supplementary material, video S1

(https://www.flickr.com/gp/revillaeloy/T55d36) shows four

half-minute recordings of an encounter (an event during which

members of different social units maintain visual contact with

one another in close proximity, usually less than 10 m) between

two non-focal groups obtained using camera traps to exemplify

some of the observed interactions (two-way actions between

members of different social units). The interactions were con-

sidered aggressive when consisting of or escalating into any

physical harassment or threatening behaviour. The specific

encounter filmed in the video lasted for 279 min during which

individuals of the two groups fed and interacted non-aggres-

sively. In particular, the video shows juveniles of the two

groups playing together, occasionally under close monitoring

by older individuals that tolerated their interactions. It also

shows that social play could be gentle or rough. Gentle play

included behaviours such as tickling, jumping and gentle wres-

tling. Rough play included more rigorous and acrobatic

behaviours such as play fighting, twirling, chasing and pushing,

which were often punctuated by transitional periods of low

activity. In general, play sessions started when an individual

first directed a playful pattern towards another and ended

when the playmates stopped their activities or one of them

moved away. Within social play, we distinguished between loco-

motor-rotational play (including play recovering an item, play

run, pirouetting, sliding down) when a session was characterized

by the absence of any kind of physical contact between the

https://www.flickr.com/gp/revillaeloy/T55d36
https://www.flickr.com/gp/revillaeloy/T55d36
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playmates, and play fighting (including biting, pushing, pulling,

slapping, stamping, retrieving, brusque rushing), when the par-

ticipants exhibited physical contact. Nevertheless, play sessions

can sometimes escalate into overt aggressions when ending

with screaming and/or bared teeth by one of the players as

well as with an aggressive interaction (e.g. chase/flee) [22].

(b) Noninvasive sample collection
A total of 279 faecal samples were collected in Ngaga Forest

between May and August 2013 (electronic supplementary

material, Dataset S1). The sampling area stretched over ca.

44 km2 mostly covered by dense forest with closed canopy and

abundant Marantaceae understory. No bais are present in

Ngaga forest. Fresh gorilla traces were searched along trails by

expert local trackers and traced back to locate night nests.

Faeces were collected from the nests and we assumed that

dungs associated with different nests at a given nesting site

were likely to correspond to different individual members of

the same group. Overall, we sampled 21–25 putative groups

that were identified as distinct based on distance between nesting

sites (greater than 1 km) and number of nests per site (possibly

informative regarding group size). Opportunistic sampling was

also carried out along trails when track evidence suggested the

presence of just one individual (solitary individuals are difficult

to track and therefore their nests cannot be easily found). The

sampled groups included only two (FG1 and FG2) out of the

three focal groups subject to daily monitoring while the third

one (FG3) could not be located with certainty within the study

area at the time of faecal sampling. However, we cannot rule
out that one of the non-focal groups sampled in the periphery

of the study area corresponded to FG3.
Age class for each sample was estimated from bolus diameter

for the majority of the faeces [23]. However, such categorization

in the field is prone to errors. Age class was ultimately confirmed

for the individuals whose genealogy could be established in

relatedness analyses (see below). Silverback samples were ident-

ified based on the comparatively bigger size of nest and dung, as

well as on the occurrence of whitish hairs in the nest. Latitude

and longitude coordinates were recorded for each sample or

nesting site using a handheld GPS. Approximately 5–10 g of

each faeces was placed in tubes with silica beads and later

stored at 2808C in the laboratory. All research was carried out

with permission from the Agence Nationale des Parcs Nationaux
and the Centre National de la Recherche Scientifique et Technique
of the Republic of the Congo.

(c) DNA isolation and amplification
DNA isolation was performed from about 10 mg of faeces fol-

lowing the hexadecyltrimethylammonium bromide (CTAB)

protocol as modified by Vallet et al. [24]. Extracts were eluted

in TE buffer (Tris 10 mM, EDTA 1 mM, pH 8.5) and stored at

2208C. Subsequent amplifications were performed in physically

isolated laboratory facilities with negative controls being routi-

nely included at each step of the laboratory workflow to check

for possible contamination. Sex was assessed by targeting a frag-

ment of the X-Y amelogenin homologous gene as in Bradley et al.
[25] and the SRY gene as in Di Fiore [26]. Samples were geno-

typed at 17 tetranucleotide autosomal microsatellite loci using

fluorescently labelled primers and multiplex amplifications as

in Le Gouar et al. [27]. Separation of PCR products was achieved

by capillary electrophoresis on an ABI 3130XL sequencer

(Applied Biosystems) with an internal size standard (GENES-

CAN-500 LIZ). Each locus was amplified between two and 12

times for each faecal sample. Consensus individual multilocus

genotypes were obtained by comparing genotypes retrieved in

independent reactions. While heterozygous genotypes were con-

firmed with at least two independent replicates, homozygous
RSPB20182019—22/1/19—11:55–Copy Edited by: Not Mentioned
needed three to four replicates depending on the locus variabil-

ity. This number of replicates was adjusted considering allelic

dropout and false allele rates estimated by comparing consensus

genotypes to PCR replicates [28]. This approach allows a by-

locus genotyping scheme by minimizing mistyping due to false

alleles and allelic dropout rates. Only individual faeces success-

fully genotyped at a minimum of six loci were retained for

further analyses. This threshold enabled a reliable individual

identification (P(ID)sib , 0.01, see below).

(d) Individual identification and genetic variability
Identification of faeces deposited by the same individual was

carried out with GENECAP [29] and CERVUS v.3.0.7 [30].

These programs identify exact matches and estimate the prob-

ability of identity among siblings, P(ID)sib, a more conservative

estimation of the probability that two random individuals from

the population share the same genotype, P(ID), by considering

the presence of close relatives. Two or more samples were con-

sidered as recaptures of the same individual when their

multilocus genotypes were identical at all loci typed in both

samples (�6 loci; this minimum number of identical loci was

chosen to obtain P(ID)sib values within the range recommended

for noninvasive studies: 0.0001 , P(ID)sib , 0.01 [31]). Since

faecal samples are prone to genotyping errors due to false alleles

and allelic dropout, they could result in slightly different geno-

types for the same individual. We first used MM-DIST [32] to

obtain distributions of pairwise mismatches for the empirical

data and for pairs of simulated genotypes with different degrees

of kinship (parent–offspring, full-siblings and unrelated individ-

uals). The empirical frequencies for mismatches at one or two loci

were 0.004 and 0.01, respectively, yet simulated values were

always orders of magnitude lower (less than 0.0001) for all kin-

ship categories. This strongly suggested that genotyping errors

could be responsible for most of the cases of mismatches at just

one or two loci. The R package allelematch [33] confirmed two

as the maximum number of mismatching alleles tolerated as

possible genotyping errors. Consequently, genotypes differing

by one or two alleles were considered recaptures of the same

individual.

Samples from the same individual and collected on the same

date and location were considered the same capture event and

not recaptures (for example, multiple faecal samples from the

same individual in a group of nests, collected assuming that

they could correspond to different individuals, n ¼ 52). A total

of 86 faeces represented recaptures which were collected up to

nine different dates. Once we established the final set of unique

individual genotypes, population allele frequencies were calcu-

lated using GENALEX v.6.502 [34,35]. Expected (HE) and

observed (HO) heterozygosity were computed with ARLEQUIN

v.3.5.2.2 [36]. The number of alleles per locus ranged from six to

18, and average (+s.d.) HE and HO were 0.759 (+0.097) and

0.760 (+0.088), respectively.

(e) Social unit identification, structure and transfer of
individuals between groups

We used a hierarchical version of the network community detec-

tion algorithm Infomap [37] (http://www.mapequation.org/

code.html) to identify sets of genotypes (individuals) that

tended to occur together across time and space. Co-occurrence

was taken as evidence of membership in the same social unit

and allowed inferring the number of social groups sampled in

the genetic survey. We adopted this method because it is known

to outperform similar approaches in terms of recovering the opti-

mal network topology [38]. Specifically, the social structure of

our sample was explored by drawing a modular social network

associated with a co-occurrence matrix connecting each individual

http://www.mapequation.org/code.html
http://www.mapequation.org/code.html
http://www.mapequation.org/code.html


to the others based on the instances when they were sampled

together in the same day and in the same nesting site. We ran Info-

map by using the individuals (identified by the genotypes) as

nodes and the co-occurrence patterns as links. In other words,

we created a link between two individuals that slept in the same

nesting site. We carried out 10 000 runs and chose the best network

on the basis of the code length indicator [37].

This approach also allowed the identification of individuals

that were associated to different groups on different dates, imply-

ing transfers between these groups. These transfers were

responsible for the hierarchical modular structure found in the

population. Due to the difficulties associated with genotype

reconstruction from faeces (see above), we paid close attention

to the genotypes of these individuals to make sure that none of

them was associated with potential genotyping errors.

We estimated relatedness (r) between individual genotypes

with COANCESTRY [39]. Since identical relatedness values are

expected for full siblings and for parent–offspring pairs,

dyadic relatedness values were complemented with genealogy

reconstruction to differentiate the two possibilities using

COLONY [40] (see Supplementary Methods).

( f ) Distribution of relatedness values in the population
The distribution of pairwise relatedness estimates between

and within sexes as well as between and within social units

and across space was explored by permutation analyses (10

000 permutations) implemented in ad hoc Microsoft Excel

macros developed by Lukas et al. [41] (see Supplementary

Methods).

3. Results
(a) Monitoring of focal groups
During the 5 years of intense monitoring we observed gorilla

focal groups on 1525 days. We registered a minimum of 34

daytime intergroup encounters involving exclusively the

focal groups (lasting 30 h in total) and of which four were

encounters of all three groups. In addition we observed

three encounters with non-focal groups, although the real

number could be higher because these groups avoid being

close to humans. Overall, the rate of intergroup encounter

was 2% (34 in 1525 monitoring days) for the three focal

groups. Because of the limited visibility in the dense Maran-

taceae understory, the observed encounters represented a

gross underestimate of the total encounter rate. During

these events 39 to 55 gorillas would meet with distances of

less than 10 m between groups and even with direct contact

between members of the different groups. We found that

the frequency of encounters between pairs of groups was

quite heterogeneous and some groups met more often than

others (electronic supplementary material, figure S2). All

interactions among members of different groups were non-

aggressive, lasting from a few minutes to several hours, and

included feeding on the same resources and social play, typi-

cally between immature individuals. In addition, we also

observed social play between adults; adult females played

with each other as well as with immature individuals,

suggesting a high motivation to engage in such interactions

(see electronic supplementary material, video S1). Interest-

ingly, silverbacks were very tolerant towards these

activities, closely monitoring the individuals involved in the

interactions and staying a few metres apart, but without

showing any aggressive behaviour. Social play involving

members of two or three groups required a high degree of

reciprocity, cooperation and communication between play

mates (for some examples of interactions see electronic

supplementary material, table S1).

(b) Noninvasive genotyping
We collected a total of 279 gorilla faecal samples (electronic

supplementary material, Dataset S1). Molecular sexing was

successful for 277 of these and failed for the other two due

to low quality DNA. Overall, 144 male and 133 female

faeces were found. Of these, 254 samples were scored at a

minimum of six loci and retained in downstream analyses.

Among these we identified 125 different individuals and on

average their genotypes (electronic supplementary material,

Dataset S2) were complete for 94% of the loci. Of these indi-

viduals, 64 (51%) were males and 61 (49%) females. Allelic

dropout and false allele error rates per locus ranged from

0.01 to 0.15 and 0.02 to 0.10, respectively. The P(ID)sib per

locus ranged from 0.300 to 0.508, and reached 1.32 � 1027

for the entire set of loci.

We used the information of the genotype profiles and

their collection site and date to infer putative groups. Some

of the groups were located multiple times (figure 1a). Field

(presence of white hairs in nests or faeces) and genetic (con-

firmed paternities) suggested the presence of 14 candidate

silverbacks, 9 of which were found within putative groups

(one per group). The remaining 5 plus 4 other individuals

(two males and two females) were always sampled alone

(on up to two different occasions: figure 1a).

Interestingly, six individuals appeared integrated within

different putative groups at different times, complicating

the definition of social units. Hence, we used a network com-

munity algorithm to identify social groups based on the

frequency at which individuals were sampled together. This

analysis yielded a modular structure [2], with multiple

social groups and some individuals sampled alone. We ident-

ified 16 groups composed of 2 to 17 individuals (figure 1b).

We found nine breeding groups (FG1, FG2, G3, G7, G8, G9,

G10, G12 and G15) defined by parent–offspring relationships

between group members, one bachelor group (a social unit

mostly including immature individuals, male-biased and

with no reproductively active females [7]: G13, composed

of at least 10 males and one immature female), and six

more non-breeding groups (G4, G5, G6, G11, G14 and G16:

figure 1c) including adult individuals of both sexes but no

offspring.

One of the groups, G9, was resampled on five occasions

in different locations, but the group composition was never

the same (figure 1a). The resampling data showed a clear

internal structure in the pattern of co-occurrence (figure 2).

The silverback was repeatedly sampled with one immature

male (one of his sons) and two adult females, whereas

other adult females and immature members of the group

were found with them less often. The fact that immature ani-

mals were resampled less often within the rest of the group

suggests that they frequently spent the night separated

from the group. The same pattern was found for all groups

that were sampled on multiple occasions: the resampling

probability was lower for immature individuals than for

adults (0.68 versus 0.88, Z ¼ 22.679, p , 0.007; 95% CI:

0.57–0.77 versus 0.79–0.94).

Our results indicate hierarchical modularity in the popu-

lation structure, with several groups assembling into larger
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Figure 1. Noninvasive monitoring of western lowland gorilla groups through t
allowed identification of putative groups (grey boxes). Recaptures on two conse
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entities due to their dynamic composition. Despite the short

sampling period, five groups (G3, G6, G7, G8, G16) joined

into a ‘supergroup’ connected by some individuals that

were sampled in different groups at different times

(figure 1a,b). Two males moved from social groups composed

mostly of unrelated individuals to their natal groups (from

G8 and G16 to G7 and G3, respectively; figure 1c, electronic

supplementary material, table S4). On the other hand, two

females moved between groups (from G7 to G6 and G8 to

G16) with silverbacks that were unrelated to them in both

groups and, thus, were not their natal groups in either case.

In addition, two females from group FG1 joined a roaming

male maybe in an attempt to establish a separate reproduc-

tive group, G5 (figure 1a,b). The remaining groups

appeared as distinct social units (figure 1b), but the fact

that some were observed only once impaired the identifi-

cation of additional intergroup transfers. In addition, a

group-living female was later resampled alone, and two indi-

viduals (one female and one male) were first found alone and

later integrated into groups.

The distribution of pairwise genetic relatedness r, after

excluding the offspring in parent- offspring pairs within

social units (to exclude pre-dispersal individuals), was very

similar for adult females and males, with similarly skewed dis-

tributions indicating that the majority of individuals were

unrelated (0 , r , 0.1; electronic supplementary material,

figure S3). Neither Mantel tests (R ¼ 0.003; p . 0.05: electronic

supplementary material, figure S4) nor permutation tests

based on different distance categories ( p . 0.05) revealed

association between geographical distance and genetic related-

ness in adult males or females. Nevertheless, permutation tests

revealed that adult females (n ¼ 45) within the same group

tended to be more related than expected ( p ¼ 0.01) indicating

that related females had settled in the same group after disper-

sal. However, relatedness between females and silverbacks in

their own group was as expected by chance alone (n ¼ 35, p
¼ 0.42).

To assess the origin of males found alone, we compared

them to silverbacks. Resident group-leading silverbacks

(n ¼ 9) were not more related to each other than to lone

silverback

adult (F)

immature (M, F)

1

2

3–4

6

Figure 2. Internal structure and cohesiveness in group G9. The thickness of
together. The colour of the line indicates possible kinship relationships (father
dashed black).
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adult males (n ¼ 8, p ¼ 0.37), The males always found

alone ( presumably solitary individuals) were excluded as

offspring of resident silverbacks. However, three of

them had offspring in the bachelor group (G13) and in

non-breeding groups (G6, G16: figure 1c).

Pedigree reconstruction confirmed that the father of pre-

dispersal individuals (immatures with their parents in the

same group) usually was the resident silverback (in 38 out

of 41 cases, 93%; figure 1c). The only exceptions were three

females (in groups G3 and G9) whose father could not be

identified in our sample. On the other hand, mothers could

be identified in the group for only 61% (23 out of 38) of the

offspring sired by the silverbacks. In two cases the mothers

were identified in another group within the study area

(both immature individuals in group G12, with their mothers

in group G11). In one more instance neither the father nor the

mother could be identified within the group (G12).

4. Discussion
Our results unveil a social system much more dynamic than

anticipated in WLG with entire groups meeting and interact-

ing, frequent exchanges of individuals between groups, and

groups that varied in composition over a period of a few

days implying limited cohesiveness.

Other studies have considered WLG group dynamics in

the longer term, showing social units that appear, split or dis-

appear [42–44]. However, group dynamics here do not

merely result from individual birth, death or migration, but

reflect an ever-changing society over a short time. Temporary

associations to different social units in some cases involved

individuals moving to groups hosting relatives. Nevertheless,

this dynamic social structure went beyond family groups and

the possible benefits of inclusive fitness. Some males were

observed to return to their natal group; the fact that they

had temporarily been in a group with unrelated individuals

entails transient acceptance by social units with no kin and

implies tolerance beyond kinship. Similarly, the presence in

some groups of immature individuals that are not sired by

es connecting individuals indicate the number of times they were sampled
ing: blue; mother – offspring: pink; full-sib: green, half-sib: orange; unrelated:
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the resident silverbacks, and the large mobility between

social units of females with offspring may be facilitated by

the absence of infanticide [9,16]. Also, adults showed a high

degree of tolerance during the encounters of focal groups.

Thus, tolerance towards members of other groups may be

central to the observed dynamic social structure in WLG.

The distribution of pairwise genetic relatedness across sexes

shows that adults were mainly unrelated suggesting that, as

previous studies indicated [16] and unlike most primates,

WLG exhibit potentially obligate natal dispersal by both

sexes at maturity. At the same time, males in the study area

were not less related than females, as would have been

expected if males dispersed more frequently or over longer

distances [11,45,46]. Our results also showed that resident sil-

verbacks in the study area were not more related to each other

than to adult males sampled alone (presumably solitary indi-

viduals), as would be expected if the latter were mainly

immigrants trying to establish new groups. Such males
turned out to be systematically excluded as offspring of resi-
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serves to test the willingness to invest in a relationship and,

simultaneously, to express their own willingness to accept

vulnerability [49]. Play is also sensitive to the quality of

group interactions, thus reflecting the very nature of social

networks [50]. Thus, WLG intergroup encounters revealed

strong similarities to those observed among bonobos (Pan
paniscus) as opposed to those among the more aggressive

chimpanzees (Pan troglodytes) [51]. While bonobos maintain

a high motivation to play even during adulthood, chimpan-

zees progressively engage in less play fighting sessions as

their age increased [22]. This study shows high motivation

to play in WLG, especially in immature individuals. Gorillas

may use intergroup interactions to survey potential transfer

and mating opportunities. Relatively few studies have exam-

ined how factors such interactions within and between

groups or individual temperament mediate aggression

and play.

There is a growing body of evidence showing how associ-
ation patterns in social species are non-random. For instance, 20182019
dent silverbacks, but some of them had offspring across the

non-breeding groups. This could indicate either mating

with females associated with other groups (extra-group

the interplay of shared space use and genetic relatedness

shape association patterns in giraffe (Giraffa camelopardalis)

social cliques [52], while female–male relationships in
(P
d

ro
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that have resulted in an increase of the

species, raising major conservation con

lation declines in the future [5,6,65]. Un

dynamics in social species is of utmost

coming to model the transmission of p

Ebolavirus [66,67]. However, since the high

by outbreaks is likely to select against th

its persistence in WLG implies that either

offs may have been rare in the past, or

benefits outweigh the disadvantages.

peculiar social behaviour of western low

outcome of its evolutionary history an

impact its fate.

Data accessibility. The datasets supporting this stu
graphic coordinates of faecal samples (Dataset
genotypes (Dataset S2), have been uploaded as
supplementary material and deposited in the Dr
(http://dx.doi.org/10.5061/dryad.97kg689) [68]
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FG, Rossi-Santos MR, Simōes-Lopes PC. 2012
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